Advanced Certificate in Reinforcement Learning Algorithms Mastery
-- viendo ahoraThe Advanced Certificate in Reinforcement Learning Algorithms Mastery is a comprehensive course designed to equip learners with the essential skills needed to excel in the rapidly growing field of reinforcement learning. This course covers advanced topics in reinforcement learning, including Q-learning, deep Q-networks, policy gradients, and actor-critic methods.
6.547+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
Acerca de este curso
HundredPercentOnline
LearnFromAnywhere
ShareableCertificate
AddToLinkedIn
TwoMonthsToComplete
AtTwoThreeHoursAWeek
StartAnytime
Sin perรญodo de espera
Detalles del Curso
โข Fundamentals of Reinforcement Learning: Cover the basics of reinforcement learning, including Markov decision processes, value functions, and policy optimization.
โข Dynamic Programming: Dive into dynamic programming techniques, such as value iteration and policy iteration, and their applications in reinforcement learning.
โข Monte Carlo Methods: Study Monte Carlo methods, including on-policy and off-policy techniques, and their use in reinforcement learning.
โข Temporal Difference Learning: Explore temporal difference learning methods, such as Q-learning and SARSA, and their advantages and disadvantages.
โข Deep Reinforcement Learning: Delve into deep reinforcement learning algorithms, like Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Proximal Policy Optimization (PPO).
โข Function Approximation: Examine the concept of function approximation and how it is applied in reinforcement learning using neural networks and other techniques.
โข Reinforcement Learning for Control: Investigate the use of reinforcement learning for control tasks, such as continuous control and robotic manipulation.
โข Multi-Agent Reinforcement Learning: Learn about multi-agent reinforcement learning, including cooperative, competitive, and mixed settings, and the challenges and opportunities associated with them.
โข Reinforcement Learning Theory: Study the theoretical foundations of reinforcement learning, including convergence guarantees, exploration-exploitation trade-offs, and regret bounds.
Trayectoria Profesional
Requisitos de Entrada
- Comprensiรณn bรกsica de la materia
- Competencia en idioma inglรฉs
- Acceso a computadora e internet
- Habilidades bรกsicas de computadora
- Dedicaciรณn para completar el curso
No se requieren calificaciones formales previas. El curso estรก diseรฑado para la accesibilidad.
Estado del Curso
Este curso proporciona conocimientos y habilidades prรกcticas para el desarrollo profesional. Es:
- No acreditado por un organismo reconocido
- No regulado por una instituciรณn autorizada
- Complementario a las calificaciones formales
Recibirรกs un certificado de finalizaciรณn al completar exitosamente el curso.
Por quรฉ la gente nos elige para su carrera
Cargando reseรฑas...
Preguntas Frecuentes
Tarifa del curso
- 3-4 horas por semana
- Entrega temprana del certificado
- Inscripciรณn abierta - comienza cuando quieras
- 2-3 horas por semana
- Entrega regular del certificado
- Inscripciรณn abierta - comienza cuando quieras
- Acceso completo al curso
- Certificado digital
- Materiales del curso
Obtener informaciรณn del curso
Obtener un certificado de carrera