Advanced Certificate in ML Optimization Techniques: Performance Improvement
-- viendo ahoraThe Advanced Certificate in ML Optimization Techniques: Performance Improvement is a comprehensive course designed to enhance your expertise in machine learning optimization. This certificate program focuses on imparting critical skills necessary to improve machine learning model performance, addressing the rising industry demand for proficient professionals in this area.
5.900+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
Acerca de este curso
HundredPercentOnline
LearnFromAnywhere
ShareableCertificate
AddToLinkedIn
TwoMonthsToComplete
AtTwoThreeHoursAWeek
StartAnytime
Sin perรญodo de espera
Detalles del Curso
โข Advanced Optimization Algorithms: An in-depth study of advanced optimization techniques such as Genetic Algorithms, Particle Swarm Optimization, and Simulated Annealing.
โข Hyperparameter Tuning in Machine Learning: Learn the art of selecting the optimal hyperparameters in ML models using techniques like Grid Search, Random Search, and Bayesian Optimization.
โข Memory & Computation Efficiency: Techniques to reduce the memory footprint and computational requirements of ML models without compromising their performance.
โข Automated Machine Learning (AutoML): Understand the tools and techniques used in AutoML for automating the end-to-end ML pipeline, including data pre-processing, feature engineering, model selection, and hyperparameter tuning.
โข Model Compression: Learn about various model compression techniques such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and knowledge distillation for deploying ML models on resource-constrained devices.
โข Distributed Machine Learning: Techniques for scaling ML models to large datasets using distributed computing frameworks such as Apache Spark, Dask, and Horovod.
โข Quantization & Binarization: Learn about quantization and binarization techniques for reducing the precision of weights and activations in deep neural networks, thereby reducing their memory requirements and computational complexity.
โข Hardware Acceleration for ML: Understand how specialized hardware such as GPUs, TPUs, and FPGAs can be used to accelerate ML workloads, and learn about the software frameworks and libraries used for programming these devices.
โข ML Optimization Benchmarking: Techniques for benchmarking and comparing the performance of different ML models, including metrics such as accuracy, F1 score, ROC-AUC, and precision-recall curves.
Trayectoria Profesional
Requisitos de Entrada
- Comprensiรณn bรกsica de la materia
- Competencia en idioma inglรฉs
- Acceso a computadora e internet
- Habilidades bรกsicas de computadora
- Dedicaciรณn para completar el curso
No se requieren calificaciones formales previas. El curso estรก diseรฑado para la accesibilidad.
Estado del Curso
Este curso proporciona conocimientos y habilidades prรกcticas para el desarrollo profesional. Es:
- No acreditado por un organismo reconocido
- No regulado por una instituciรณn autorizada
- Complementario a las calificaciones formales
Recibirรกs un certificado de finalizaciรณn al completar exitosamente el curso.
Por quรฉ la gente nos elige para su carrera
Cargando reseรฑas...
Preguntas Frecuentes
Tarifa del curso
- 3-4 horas por semana
- Entrega temprana del certificado
- Inscripciรณn abierta - comienza cuando quieras
- 2-3 horas por semana
- Entrega regular del certificado
- Inscripciรณn abierta - comienza cuando quieras
- Acceso completo al curso
- Certificado digital
- Materiales del curso
Obtener informaciรณn del curso
Obtener un certificado de carrera