Advanced Certificate in Dynamic Evaluation Models
-- ViewingNowThe Advanced Certificate in Dynamic Evaluation Models is a comprehensive course designed to equip learners with critical skills in evaluation model creation and implementation. This certification focuses on advanced techniques, enabling professionals to make informed, data-driven decisions in today's fast-paced business environment.
7,097+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ě´ ęłźě ě ëí´
100% ě¨ëźě¸
ě´ëěë íěľ
ęłľě ę°ëĽí ě¸ěŚě
LinkedIn íëĄíě ěśę°
ěëŁęšě§ 2ę°ě
죟 2-3ěę°
ě¸ě ë ěě
ë기 ę¸°ę° ěě
ęłźě ě¸ëśěŹí
⢠Advanced Regression Analysis: This unit will cover the advanced techniques in regression analysis, including multiple linear regression, logistic regression, and panel data analysis. It will also discuss the assumption diagnostics, model selection, and specification testing.
⢠Time Series Analysis: This unit will focus on time series models and forecasting techniques, including ARIMA, GARCH, and state-space models. It will also cover the unit root testing, cointegration, and vector error correction models.
⢠Simulation and Monte Carlo Methods: This unit will introduce the simulation and Monte Carlo methods for evaluating complex models and decision problems. It will cover the basic concepts, design of simulation experiments, and variance reduction techniques.
⢠Machine Learning and Data Mining: This unit will cover the machine learning and data mining techniques for evaluating dynamic models and making predictions. It will discuss the supervised and unsupervised learning, decision trees, random forests, support vector machines, and neural networks.
⢠Bayesian Inference and Modeling: This unit will introduce the Bayesian inference and modeling techniques for evaluating dynamic models. It will cover the basic concepts, Bayes' theorem, prior and posterior distributions, Markov Chain Monte Carlo (MCMC) methods, and hierarchical modeling.
⢠Risk Analysis and Evaluation: This unit will focus on the risk analysis and evaluation techniques for dynamic models. It will cover the value at risk, expected shortfall, extreme value theory, stress testing, and scenario analysis.
⢠Optimization and Decision Analysis: This unit will cover the optimization and decision analysis techniques for dynamic models. It will discuss the linear and nonlinear programming, integer programming, dynamic programming, and stochastic optimization.
⢠Computational Methods and Software: This unit will introduce the computational methods and software for implementing dynamic evaluation models. It will cover the matrix algebra, numerical methods, optimization algorithms, and statistical software packages.
ę˛˝ë Ľ 경ëĄ
ě í ěęą´
- 죟ě ě ëí 기본 ě´í´
- ěě´ ě¸ě´ ëĽěë
- ěť´í¨í° ë° ě¸í°ëˇ ě ꡟ
- 기본 ěť´í¨í° 기ě
- ęłźě ěëŁě ëí íě
ěŹě ęłľě ěę˛Šě´ íěíě§ ěěľëë¤. ě ꡟěąě ěí´ ě¤ęłë ęłźě .
ęłźě ěí
ě´ ęłźě ě ę˛˝ë Ľ ę°ë°ě ěí ě¤ěŠě ě¸ ě§ěęłź 기ě ě ě ęłľíŠëë¤. ꡸ę˛ě:
- ě¸ě ë°ě 기ę´ě ěí´ ě¸ěŚëě§ ěě
- ęśíě´ ěë 기ę´ě ěí´ ęˇě ëě§ ěě
- ęłľě ě겊ě ëł´ěě
ęłźě ě ěąęłľě ěźëĄ ěëŁí늴 ěëŁ ě¸ěŚě뼟 ë°ę˛ ëŠëë¤.
ě ěŹëë¤ě´ ę˛˝ë Ľě ěí´ ě°ëŚŹëĽź ě ííëę°
댏롰 ëĄëŠ ě¤...
ě죟 돝ë ě§ëʏ
ě˝ě¤ ěę°ëŁ
- 죟 3-4ěę°
- 쥰기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- 죟 2-3ěę°
- ě 기 ě¸ěŚě ë°°ěĄ
- ę°ë°Ší ëąëĄ - ě¸ě ë ě§ ěě
- ě 체 ě˝ě¤ ě ꡟ
- ëě§í¸ ě¸ěŚě
- ě˝ě¤ ěëŁ
ęłźě ě ëł´ ë°ę¸°
íěŹëĄ ě§ëś
ě´ ęłźě ě ëšěŠě ě§ëśí기 ěí´ íěŹëĽź ěí ě˛ęľŹě뼟 ěě˛íě¸ě.
ě˛ęľŹěëĄ ę˛°ě ę˛˝ë Ľ ě¸ěŚě íë