Global Certificate in Plasmonic Metamaterials Synthesis
-- ViewingNowThe Global Certificate in Plasmonic Metamaterials Synthesis is a comprehensive course that provides learners with essential skills in the design, synthesis, and application of plasmonic metamaterials. This certificate course is crucial in today's world, where metamaterials are revolutionizing various industries, including telecommunications, energy, and healthcare.
7,090+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
ๅ ณไบ่ฟ้จ่ฏพ็จ
100%ๅจ็บฟ
้ๆถ้ๅฐๅญฆไน
ๅฏๅไบซ็่ฏไนฆ
ๆทปๅ ๅฐๆจ็LinkedInไธชไบบ่ตๆ
2ไธชๆๅฎๆ
ๆฏๅจ2-3ๅฐๆถ
้ๆถๅผๅง
ๆ ็ญๅพ ๆ
่ฏพ็จ่ฏฆๆ
โข Fundamentals of Plasmonics: Introduction to plasmons, surface plasmons, localized surface plasmons, and bulk plasmons.
โข Metamaterials: Overview of metamaterials, properties, and classifications. Discussion on the behavior of electromagnetic waves in metamaterials.
โข Plasmonic Metamaterials: Explanation of plasmonic metamaterials, their properties, and unique characteristics. Comparison with conventional metamaterials.
โข Synthesis Methods for Plasmonic Metamaterials: Detailed exploration of various synthesis techniques, such as lithography, self-assembly, and nanoimprinting.
โข Nanofabrication Techniques: Study of advanced nanofabrication techniques for producing plasmonic metamaterials, including electron beam lithography, focused ion beam milling, and nanosphere lithography.
โข Design and Simulation of Plasmonic Metamaterials: Analysis of computational methods and software tools for designing and simulating plasmonic metamaterials.
โข Applications of Plasmonic Metamaterials: Investigation of real-world applications, such as sensing, imaging, photovoltaics, and optical computing.
โข Characterization Techniques: Examination of various characterization techniques for plasmonic metamaterials, including scattering-type scanning near-field optical microscopy (s-SNOM) and dark-field microscopy.
โข Emerging Research and Future Directions: Overview of the latest research and trends in plasmonic metamaterials, including nonlinear plasmonics and topological plasmonics.
่ไธ้่ทฏ
ๅ ฅๅญฆ่ฆๆฑ
- ๅฏนไธป้ข็ๅบๆฌ็่งฃ
- ่ฑ่ฏญ่ฏญ่จ่ฝๅ
- ่ฎก็ฎๆบๅไบ่็ฝ่ฎฟ้ฎ
- ๅบๆฌ่ฎก็ฎๆบๆ่ฝ
- ๅฎๆ่ฏพ็จ็ๅฅ็ฎ็ฒพ็ฅ
ๆ ้ไบๅ ็ๆญฃๅผ่ตๆ ผใ่ฏพ็จ่ฎพ่ฎกๆณจ้ๅฏ่ฎฟ้ฎๆงใ
่ฏพ็จ็ถๆ
ๆฌ่ฏพ็จไธบ่ไธๅๅฑๆไพๅฎ็จ็็ฅ่ฏๅๆ่ฝใๅฎๆฏ๏ผ
- ๆช็ป่ฎคๅฏๆบๆ่ฎค่ฏ
- ๆช็ปๆๆๆบๆ็็ฎก
- ๅฏนๆญฃๅผ่ตๆ ผ็่กฅๅ
ๆๅๅฎๆ่ฏพ็จๅ๏ผๆจๅฐ่ทๅพ็ปไธ่ฏไนฆใ
ไธบไปไนไบบไปฌ้ๆฉๆไปฌไฝไธบ่ไธๅๅฑ
ๆญฃๅจๅ ่ฝฝ่ฏ่ฎบ...
ๅธธ่ง้ฎ้ข
่ฏพ็จ่ดน็จ
- ๆฏๅจ3-4ๅฐๆถ
- ๆๅ่ฏไนฆไบคไป
- ๅผๆพๆณจๅ - ้ๆถๅผๅง
- ๆฏๅจ2-3ๅฐๆถ
- ๅธธ่ง่ฏไนฆไบคไป
- ๅผๆพๆณจๅ - ้ๆถๅผๅง
- ๅฎๆด่ฏพ็จ่ฎฟ้ฎ
- ๆฐๅญ่ฏไนฆ
- ่ฏพ็จๆๆ
่ทๅ่ฏพ็จไฟกๆฏ
่ทๅพ่ไธ่ฏไนฆ