Global Certificate in Data Science Essentials: Analytical Techniques
-- viendo ahoraThe Global Certificate in Data Science Essentials: Analytical Techniques is a comprehensive course that imparts critical data science skills in high demand by today's industries. This program equips learners with essential knowledge in data manipulation, visualization, and analytical techniques using real-world data, empowering them to derive valuable insights and make data-driven decisions.
3.476+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
Acerca de este curso
HundredPercentOnline
LearnFromAnywhere
ShareableCertificate
AddToLinkedIn
TwoMonthsToComplete
AtTwoThreeHoursAWeek
StartAnytime
Sin perรญodo de espera
Detalles del Curso
โข Data Collection Techniques: An introduction to various data collection methods, including surveys, web scraping, interviews, and experiments. Emphasis on selecting the appropriate method based on the research question and data type.
โข Data Cleaning and Pre-processing: Techniques for cleaning and preparing datasets for analysis, such as handling missing values, outliers, and inconsistent data.
โข Data Visualization: An overview of data visualization techniques, including chart types, color theory, and best practices for creating effective visualizations.
โข Exploratory Data Analysis: Methods for exploring and summarizing datasets, including measures of central tendency, variability, and correlation.
โข Statistical Inference: Foundational concepts of statistical inference, including hypothesis testing, confidence intervals, and p-values.
โข Regression Analysis: Techniques for modeling relationships between variables using linear and logistic regression. Includes an introduction to assumptions, diagnostics, and model selection.
โข Machine Learning Fundamentals: Overview of machine learning approaches, including supervised, unsupervised, and reinforcement learning.
โข Experimental Design and Causal Inference: Methods for designing experiments to test causal relationships, including randomized controlled trials and natural experiments.
โข Ethics in Data Science: Discussion of ethical considerations in data science, including privacy, bias, and fairness in algorithmic decision-making.
Trayectoria Profesional
Requisitos de Entrada
- Comprensiรณn bรกsica de la materia
- Competencia en idioma inglรฉs
- Acceso a computadora e internet
- Habilidades bรกsicas de computadora
- Dedicaciรณn para completar el curso
No se requieren calificaciones formales previas. El curso estรก diseรฑado para la accesibilidad.
Estado del Curso
Este curso proporciona conocimientos y habilidades prรกcticas para el desarrollo profesional. Es:
- No acreditado por un organismo reconocido
- No regulado por una instituciรณn autorizada
- Complementario a las calificaciones formales
Recibirรกs un certificado de finalizaciรณn al completar exitosamente el curso.
Por quรฉ la gente nos elige para su carrera
Cargando reseรฑas...
Preguntas Frecuentes
Tarifa del curso
- 3-4 horas por semana
- Entrega temprana del certificado
- Inscripciรณn abierta - comienza cuando quieras
- 2-3 horas por semana
- Entrega regular del certificado
- Inscripciรณn abierta - comienza cuando quieras
- Acceso completo al curso
- Certificado digital
- Materiales del curso
Obtener informaciรณn del curso
Obtener un certificado de carrera