Global Certificate in Reinforcement Learning Solutions: Efficiency
-- viendo ahoraThe Global Certificate in Reinforcement Learning Solutions: Efficiency course is a comprehensive program designed to equip learners with essential skills in reinforcement learning. This field is crucial for developing artificial intelligence (AI) systems that can make decisions and improve themselves based on rewards and punishments.
5.128+
Students enrolled
GBP £ 140
GBP £ 202
Save 44% with our special offer
Acerca de este curso
HundredPercentOnline
LearnFromAnywhere
ShareableCertificate
AddToLinkedIn
TwoMonthsToComplete
AtTwoThreeHoursAWeek
StartAnytime
Sin perรญodo de espera
Detalles del Curso
โข Introduction to Reinforcement Learning Solutions: Understanding the basics of reinforcement learning, its applications, and how it differs from other machine learning techniques. โข Markov Decision Processes: Learning the fundamental concepts and principles of Markov Decision Processes (MDPs), including state, action, reward, and transition probabilities. โข Temporal Difference Learning: Exploring the concept of temporal difference learning, its algorithms, and how it is used to estimate the value function in reinforcement learning. โข Q-Learning: Understanding Q-learning, its applications, and how it is used to find the optimal policy in reinforcement learning. โข Deep Reinforcement Learning: Learning about deep reinforcement learning, its architecture, and how it is used to solve complex problems. โข Policy Gradients: Understanding policy gradients, their advantages, and how they are used to optimize policies in reinforcement learning. โข Actor-Critic Methods: Exploring actor-critic methods, their advantages, and how they are used to improve the stability and efficiency of reinforcement learning algorithms. โข Monte Carlo Tree Search: Learning about Monte Carlo Tree Search, its applications, and how it is used to solve decision-making problems. โข Evaluation and Comparison of Reinforcement Learning Algorithms: Understanding how to evaluate and compare the performance of different reinforcement learning algorithms.
Trayectoria Profesional
Requisitos de Entrada
- Comprensiรณn bรกsica de la materia
- Competencia en idioma inglรฉs
- Acceso a computadora e internet
- Habilidades bรกsicas de computadora
- Dedicaciรณn para completar el curso
No se requieren calificaciones formales previas. El curso estรก diseรฑado para la accesibilidad.
Estado del Curso
Este curso proporciona conocimientos y habilidades prรกcticas para el desarrollo profesional. Es:
- No acreditado por un organismo reconocido
- No regulado por una instituciรณn autorizada
- Complementario a las calificaciones formales
Recibirรกs un certificado de finalizaciรณn al completar exitosamente el curso.
Por quรฉ la gente nos elige para su carrera
Cargando reseรฑas...
Preguntas Frecuentes
Tarifa del curso
- 3-4 horas por semana
- Entrega temprana del certificado
- Inscripciรณn abierta - comienza cuando quieras
- 2-3 horas por semana
- Entrega regular del certificado
- Inscripciรณn abierta - comienza cuando quieras
- Acceso completo al curso
- Certificado digital
- Materiales del curso
Obtener informaciรณn del curso
Obtener un certificado de carrera